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1

Abstract

The major goal of the present study was to demonstrate an aptitude-
strategy interaction in linear syllogistic reasoning, Specifically, it
was hypothesized that the efficiency of each of four alternative strategies
for solving linear syllogisms~-problems such as "John is taller than Bill;
Bill is taller than Pete; who is tallest?"--would depend upon subjects'
patterns of verbal and spatial abilities. This hypothesis was confirmed.
he research also had three subsidiary goals. The first was to determine
whether it is possible to train subjects to use various classes of strate-
gles for solving linear syllogisms. It was found that such training is
possible. The second goal was to determine whether certain strategies for
solving linear syllogisms might be more efficient on the average than others.
It was found that one strategy, used spontaneously by only a small minority
of subjects but rather easily trainable, is more efficient than alternative
strategies that subjects seem to use. The third goal was to provide a series
of converging operations for testing the validity of one particular account
of linear-syllogistic reasoning--a spatial-linguistic mixture model~-for
subjects receiving no explicit instruction in the solution of linear syllogisms.
The validity of this model for the untrained subjects was upheld. It was
concluded that componential analysis, a series of conceptual and methodological
techniques for investigating intelligent performance, can provide a useful means

for studying interactions between aptitudes and experimental treaCmenés.
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2

An Aptitude-Strategy Interaction in Linear Syllogistic Reasoning

During the 1970's, psychologists have witnessed a belated and long
overdue response to Cronbach's (1957) plea for a unification of the two
disciplines of scientific psychology (see, for example, Resnick, 1976).
Two responses to this plea that have received particularly widespread
attention are the study of aptitude~treatment interactions (see Cronbach
& Snow, 1977) and cognitive-process analysis (see Sternberg, 1977b). The
Present research represents a first attempt to apply a form of cognitive-
process analysis, componential analysis (Sternberg, 1977b, 1978a, 1978b,
1978¢c, 1979), to the investigation of a particular kind of aptitude-treat-
ment interaction, one involving the interaction between aptitude and op-
timal strategy during problem solving. This integration of methodologies
was motivated in large part by the hypothesis that the failure to obtain
reliable and replicable aptitude~treatment interactions in much previous
r esearch has been due in large part'to the failure to apply certain the-
oretical and methodological tools that might have permitted the discovery
o f such interactions.

The major goal of the present study was to demonstrate an aptitude-

strategy interaction in linear syllogistic reasoning. Specifically, it

was hypothesized that the efficiency of each of four alternative strategies

f or solving linear syllogisms--problems such as "John is taller than Bill;
Bill is taller than Pete; who is tallest?"--would depend upon subjects'
patterns of verbal and spatial abilities. The research also had three

subsidiary goals: first, to determine whether it is possible to train

subjects to use various classes of strategies for solving linear syllogisms

(and ideally, the class of strategy most suited to an individual subject's
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Et pattern of abilities); second, to determine whether certain strategies
for solving linear syllogisms might be more efficient on the average than !

others; and third, to provide a series of converging operations for testing

2 the validity of one particular account of linear-syllogistic reasoning

(Sternberg, in press-a, in press-b; Sternberg, Guyote, & Turner, in press)

as a model of strategy for subjects receiving no explicit instruction on

how to solve linear-syllogism problems.

Interactions between aptitudes and optimum strategies for problem

Mad L o

solution have appeared only infrequently in the psychological literature,
but at least some of the interactions that have been demonstrated have been
striking. Such interactions have been demonstrated in the solution of ana-
grams and in the solution of sentence-picture comparisons.

Gavurin (1967) randomly divided 27 college students into two groups. |
Subjects in one group solved anagrams under standard conditions: The ex- |
perimenter presented the subjects with sets of scrambled words, and required
the subjects to rearrange the letters mentally until they produced an accepta-
ble English word. Subjects in the second group solved the anagrams under
a nonstandard condition: The experimenter presented the subjects with the
individual letters of each word written on individual tiles that could be
manipulated manually. Gavurin hypothesized that because performance in the
first condition required mental manipulation and visualization of the letters
and various letter patterns, a significant correlation would be found between
scores on the anagrams task and scores on a test of spatial ability; he also
hypothesized that because performance in the second condition permitted

manual manipulation and physical rearrangement of the letters and various

letter patterns, the correlation between anagram performance and spatial

s

test scores would be trivial. These hypotheses were confirmed. The cor-
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relation between anagrams solved and scores on the Minnesota Paper Form
Board, a standard test of spatial ability, were .54 in the first condition,
and -.18 in the second condition. These two correlations differed signifi-
cantly from each other.

MacLeod, Hunt, and Mathews (1978) discovered pronOunced individual
differences in strategies for solving sentence-picture comparison problens.
In a typical problem of this type, a subject is presented with a sentence,
'

*
and a picture, such as "+." The

subject's task is to indicate whether the picture correctly depicts the

such as "The star is above the plus,’

content of the statement. The authors found that of 70 university under-
graduates, a majority adopted a linguistic strategy well described by a
model of task performance proposed by Carpenter and Just (1975). The
authors also found, however, that a smaller number of subjects used a
pictorial-spatial strategy. Moreover, subjects using the pictorial-spatial

strategy were substantially superior in spatial ability to subjects using

the linguistic strategy. The evidence suggested, therefore, that a subject's
choice of strategy was dictated at least in part by his or her pattern of
verbal and spatial abilities.

Previous research on the linear-syllogisms task has tended to concentrate
upon identifying the strategy or strategies subjects use, and the mental repre-
sentations upon which these strategies act, when the subjects solve linear syl-
logisms (e.g., Clark, 1969a, 1969b; DeSoto, London, & Handel, 1965; Huttenlocher,
1968; Huttenlocher & Higgins, 1971; Sternberg, in press-a, in press-b). Four

basic models have been proposed. These are summarized here. The first three

of the models are described in some detail in Sternberg (in press-b).
According to a spatial model (DeSoto et al., 1965; Huttenlocher, 1968;

Huttenlocher & Higgins, 1971), information from the two premises of a linear
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syllogism is integrated and then represented in a spatial array. In the example

presented earlier, the three terms in the linear syllogism would be repre-
sented in an array such as g:?:. The exact form of the array will depend
upon the premise adjective. P:::tain adjectives, such as taller, are more
likely to lead to vertical arrays, whereas other adjectives, such as faster,
are more likely to lead to horizontal arrays. But an array is always formed,
and when the subject is asked, say, who is tallest,the subject answers the
question by searching for the top member of the particular array.

According to a linguistic model (Clark, 1969b), information from the ;
two premises of a linear syllogism is not integrated, and is represented by
deep-structural linguistic propositions. In the example presented earlier,
the two premises would be represented as (John is tall+; Bill is tall); (Bill
is tall+; Pete is tall). When the subject is asked who is tallest, the sub-

ject searches for the item representing an individual who is tall+ relative

to both other individuals.

According to a mixed model (Sternberg, in press-b), information from the
two premises of a linear syllogism is first decoded into a linguistic format
and then recoded into a spatial format. When the subject is asked who is
tallest, he or she always scans the spatial array for the correct answer, and
in certain cases, confirms the result of this scan by checking the linguistic
propositions. This model attempts to capture some of the best features of
the spatial and linguistic models, and also contains features found in neither

of the previous models.

According to an algorithmic model (Quinton & Fellows, 1975), a surface-
structural linguistic representation of premise information is sufficient to
solve linear syllogisms, and can be used by subjects to bypass the more so-

phisticated representations proposed by the models described above. When the
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subject is asked who is tallest, a simple set of rules (an algorithm), de-
scribed later in the article, is used to answer the question.

Two other models have been proposed that posit strategy changes over
time. These models both argue that the spatial and linguistic models are
each used at different levels of practice with linear syllogisms, but they
disagree as to the priority of usage. According to a spatial-linguistic
strategy-change model (Johnson-Laird, 1972; Wood, Shotter, & Godden, 1974),
subjects first use a spatial strategy, and after practice, switch to a lin-
guistic strategy. According to a linguistic-spatial strategy-change model
(Shaver, Pierson, & Lang, 1974), subjects first use a linguistic strategy,
and after practice, switch to a spatial strategy.

The present research utilized the models of linear syllogistic reasoning
described above as the theoretical basis for accomplishing the goals set out
earlier. Subjects in the experiment were divided into three groups. In a
first group, subjects received no special training in the solution of linear
syllogisms; they were required to devise their own strategies. In a second
group, subjects received visualization training; they were given instruction
in how to form spatial arrays and were told to use such arrays in their solu-
tion of the problems. In a third group, subjects received algorithmic training;
they were shown how to use the algorithm proposed by Quinton and Fellows (1975)
to solve linear syllogisms, and were told to use this algorithm. Data analyses
were planned to compare the performance of the three groups.

Method
Subjects

Subjects in the experiment were 144 Yale undergraduate and graduate students,

approximately equally divided between sexes. Subjects were assigned to’

three instructional groups at random, with' the constraint that there be equal
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numbers of subjects in each group. All subjects were paid $2.50 per hour
for their participation, which lasted about two hours.

Materials

? Experimental stimuli. Experimental stimuli were three~term series prob-

lems (linear syllogisms) and two-term series problems. Typical three- and two-
! term series problems were "John is taller than Bill; Bill is taller than Pete;
Who is tallest? John, Bill, Pete" and "Bill is not as tall as John; Who is

shortest?" Bill,John." The 32 types of three-term series problems varied

T

dchotomously along five dimensions: (a) whether the first premise adjective
was marked (e.g., shorter) or unmarked (e.g., Egllgg);l(b) whether the second
premise adjective was marked or unmarked; (c) whether the question adjective
was marked or unmarked; (d) whether the premises were affirmative or negative;
(e) whether the correct answer to the question was in the first or second
premise. The 8 types of two-term series problems varied dichotomously along
three dimensions: (a) whether the premise adjective was marked or unmarked;

(b) whether the question adjective was marked or unmarked; (c) whether the

premise was affirmative or negative. There were three replications of each

item type, one using the adjective pair taller-shorter, one using the adjective

pair better-worse, and one using the adjective pair faster-slower.

Mental ability tests. Four cests of mental abilities were administered:

two tests of verbal ability and two tests of spatial ability. The verbal
tests were & word grouping task, in which subjects had to indicate which of five
words did not belong with the other four, and Form S of the DAT Verbal
Reasoning Test, which required subjects to solve verbal analogies with the
first and last terms missing. The spatial tests were Card Rotation, from

the French Kit of Reference Tests for Cognitive Factors, which required sub-

jects to rotate two-dimensional shapes mentally and decide whether or not

WS A L TR KA A 4 0
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they were mirror images of other shapes, and Form S of the DAT Spatial Relations
Test, which requirecd subjects to visualize what forms would look like when
folded up in three dimensions.
Apparatus
Experimental stimuli were presented via a Gerbrands two-field tachisto-
scope with an attached millisecond clock. Mental ability tests were adminis-
tered in paper-and-pencil format.
Design
The main dependent variable was snlution latency for each of the two- and
three-term series problem types. The main independent variables in the experi-
mental design were instructional treatment and stimulus type. There were a
total of 40 different stimulus types (two- and three-term series problems)
administered in three replications, and these served as the basis for the mathe-
matical modeling used to identify strategies followed in each of the three
instructional groups.
Procedure
; Testing was done in one sitting, although the presentation of experimental
stimuli was divided into three parts, which will be referred to as "sessions.”
Each session consisted of presentation of the 40 item types with one of the
three adjective pairs. Mental ability testing was done at the end of the
sitting, with tests presented in random order under the constraint that two
tests of the same type (verbal or spatial) were never presented consecutively.
Subjects in all three groups were first told that they would be solving
"relational inference" problems, and were then shown three typical relational
inference items. Next, subjects were instructed in how to solve the problenms,
as described below. Then, subjects in all groups were told that "accuracy is

extremely important. Though you should attempt to solve each problem as rapidly
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as you are able, it is most important that you make the fewest errors possible."

Subjects in all groups were told that their task was to "read the
statement(s), answer the question based on your understanding of the state-
ments(s), and choose one of the answer choices" by pressing the appropriate
button on a button panel. Subjects in the visualization and algorithm groups
were further told that "though there are many methods of solving these prob-
lems, for the purposes of this experiment, you will be asked to solve these
problems using the following method." The "following method" differed across
the two instructional groups.

Members of the visualization group were told to "try to organize the
statements into a spatial array or a series formation. Try to visualize the
relationships described in the statements." Subjects were then shown examples
of different pictorial arrays that might correspond to what they would con-
struct in their heads. They were told that they could use any of the pic-
torial formats, or some other, so long as they used some pictorial format.

Members of the algorithm group were told to read the final question first,
then to read the first statement, then to answer the question in terms of
the first statement, and finally to scan the second statement. "If the answer
to the first statement is not contained in the second statement, the answer
to the first statement is the correct response to the entire problem....If
the answer to the first statement is contained in the second statement, then
the other answer choice in the second statement is the correct response to
the entire problem." As subjects went through the steps, they followed along
an actual example of the method applied to a sample linear ayllogism?

Following the instructions, subjects were given ten practice items before

starting the actual test items.
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Results
Original Groups
[; Group means. Table 1 shows mean latencies for subjects in each of

the three groups. The data of main interest are for the three~term series

Insert Table 1 about here

problems averaged over sessions. Means are also shown for the three-term
! ] series problems for each individual session, and for the two- and three-
term series problems combined.

The question of interest was whether there would be any effect of training
condition. A one-way analysis of variance on the three-term series latencies
averaged over sessions reveals that there was a highly significant effect of
condition, F(2,141) = 25.91, p < .00l. A follow-up of this analysis using

the Newman-Keuls procedure indicates that the mean for the algorithmic condi-

tion differs significantly from the means for each of the other two conditions,

but that the means for these two conditions do not differ significantly from

each other. These data indicate that algorithmic training reduces response

3
times relative to no training or visualization training. Visualization training,
hovever, has no effect upon response times relative to no training at all.

Intercorrelations and reliabilitiee. Table 2 shows intercorrelations

between and reliabilities of the solution latencies for the linear-syllogism
problems. Whereas correlations between latencies for the algorithmic group
and each of the other two groups are clzarly below the reliabilities of the
data, the correlation between the latencies of the untrained and visualizgtion

groups is at the same level as the reliabilities of the data. The high corre-

Insert Table 2 about here
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lation between data sets, combined with the nonsignificant difference between
means, strongly suggests that subjects in the visualization group are solving
the linear syllogisms in the same way that subjects in the untrained group
are solving the problems. Moreover, these results suggest that untrained
subjects do in facg rely upon spatial visualization at some point during the
solution process. The results are consistent with either the spatial or
mixed model for untrained subjects, but not with either of the linguistic or
algorithmic models, neither of which posits any spatial representation of
premise terms.

Matugmatical modeling. Mathematical models quantifying each of the infor-

nation—btocessing models were fit to the latency data for both the group and
individual data. Details concerning the quantification procedures, which
require a somewhat lengthy exposition, are contained elsewhere (Sternberg,
in press-b). The basic procedure, which has been used for other kinds of
problems as well (cf. Sternberg, 1977a, 1977b, 1979; Sternberg, Guyote, &
Turner, in press), involves assigning a mathematical parameter to represent

the duration of each information-processing component in each model. Values i

of parameters are then estimated by a multiple regression of solution latencies
on the independent variables (sources of problem difficulty) stipulated by
each model. The models are then compared in their relative abilities to
predict the solution latencies for the various item types. The total number
of data points to be predicted equals the number of item types: 32 for three-
term series problems, and 40 for two- and three-~term series problems combined.
Fits of models are assessed in terms of two indices of model quality?
Rz and root-mean-square deviation (RMSD). The first index, Rz, is a measure
of the proportion of variance in the response-time data .accounted for by

the set of independent variables specified by a given model; higher values,
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of course, are indicative of better fit. The second index, RMSD, is a measure
of the root-mean-square deviation of the observed values from the values pre-
dicted under a given model; lower values are indicative of better fit. Values
of RMSD are expressed in the same unit of measurement as the data, so that
it is possible to compare the two sets of values to each other directly.
Values of Rz and RMSD generally lead to consistent conclusions, although they
need not do so if the variances of the predicted values differ across models.
Rz is sensitive to these variance differences, whereas RMSD is not.

Table 3 shows fits of the mathematical models to the latency data for

each of the three groups. Fits of primary interest are those for three-

Insert Table 3 about here

term series problems averaged over sessions, although fits are also shown
for the individual sessions, and for the two- and three-term series problems
combined. We shall consider separately the fits for each of the three groups.
The results of the present experiment for the untrained group corroborate
those of Sternberg (in press-a, in press-b) in supporting the mixed model over
the linguistic and spatial models. The algorithmic model was not tested in
either of the previous studies, although the mixed model is superior to this
model as well in the present study. The levels of fit for the mixed model
(and for the alternative models) are quite close to those in the previous
experiments, suggesting that subjects in the untrained group probably solved
the problems in much the same way as did subjects in the earlier experiments.
As might be expected from the analyses of means and intercorrelationms,
the results for the visualization group closely parallel those for the un-
trained group. Recall that although subjects in this group were trained to

use a particular representation, they were not trained to use a particular
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set of operations to act upon this representation. Thus, either of the
spatial or mixed strategies would have been consistent with the training
mbjects received. Again, the superiority of the mixed model held over
sessions, and for the combined data of two~ and three-term series problems
as well.

Finally, consider the model fits for the algorithmic group. Here,
the results are equivocal. The fit of the mixed model is clearly worse
than in either of the other two groups, and the fit of the algorithmic model
B clearly better. But the data do not distinguish these two models from each
other, nor even distinguish them from the linguistic model. There are at
least two reasons why this might be so, and both of them are likely to apply
© some extent. First, what subjects are actually doing in the algorithmic
group might be different from what they are doing in the other two groups,
but might n%t correspond exactly to what any of the prespecified models claim
the subjects are doing. This hypothesis is almost certainly correct, since
the value of Rz for the three-term series problems is considerably lower
than the reliability of the data. Second, there may be in this group (and
i1 the other instructed group as well) subjects who are using a model other
than the assigned one, in this case, the algorithmic one. The failure of these
subjects to follow instructions would result in a mixture of strategies within
as well as between groups. This possibility will be tested later.

None of the three conditions showed evidence of an interaction between
the optimum model of performance and amount of practice. There is thus no
evidence to support the strategy-change models noted earlier.

Correlations between solution latencies and ability factor scores. A
factor analysis was performed on the four mental ability tests using a principal~

factor solution rotated to a varimax criterion. Two factors emerged (with
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dgenvalues greater than one), accounting for % of the variance in the data.
he factors could be clearly labeled as a verbal factor and a spatial factor.
Since correlations with the factor scores present a good summary of correlations
with the individual tests, only correlations with the factor scores will be
presented here. These correlations with factor scores (estimated by regression)

are presented in Table 4.

Insert Table 4 about here

The correlations indicate that the experimental stimuli provide good
measures of both verbal and spatial abilities in the uninstructed and visually
instructed groups. This is the pattern one would expect if subjects were using
a mixture model in which bothﬁlinguistic and spatial representations are used
t.#arying points during the sélution sequence. These correlations, then, are
supportive of a mixed model. Correlations in the algorithmic group are gen-
erally lower than in either of the other two groups, although they are also
genetaily significant. Since the factors are orthogonal, the significant cor-
relations with.both abilities cannot be due to any overlap in the two kinds
d abilities. The data therefore suggest a mixture of representations in the
algorithmic group as well, although it is not necessarily the case that the
linguistic and spatial representations used in this group are the same as in
the other groups. The differences in patterns of results throughout the
experiment, in fact, suggest that they may well be different.

A troubling feature of these data and the previous ones is the possibility
of subjects in particular groups who, for one reason or another, did not follow
the instructions given to them. Although the present groupings are the optimum
ones for discovering the effects of training, they may be less than optimal for

discovering various properties of group data collected from subjects using a
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single model, whichever model that may be. In order to investigate these
latter kinds of properties, subjects were regrouped in a way that would greatly
increase the probability of a homogeneous strategy within each grouping.

New Groups
Composition of new groups in terms of old groups. Table 5 shows the

composition of the new groups in terms of the memberships of the old groups.
Subjects were assigned to new groups on the basis of individual modeling of

their latency data for the linear syllogisms: Each subject was placed in

a group corresponding to the strategy for which his or her individual R2 wvas

Hghest. Results of assignment by RMSD were almost identical, and had no con-

sequences for interpretation of any results.

Insert Table 5 about here

It can be seen that each original group had at least some subjects best
fit by each of the models. The proportions were rather different for the un-
trained and visualization groups on the one hand, and the algorithmic group
on the other. A full 83% of the subjects in the untrained and visualization
groups were best fit by the mixed model. These results are reassuring in
that they indicate that the group data fairly represent the individual data.
Although there are some individual differences, a large majority of subjects
& the untrained and visualization groups do indeed use the mixed model. In
the algorithmic group, just under half of the subjects were best fit by each
o the algorithmic and mixed models. A smattering of subjects were best fit
by each of the other two models. These data are also quite consistent with
the group data, although the linguistic model does not fare as well at the
individual level as at the group level. The data suggest that although

algorithmic training greatly increased the number of subjects using the

1‘
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algorithmic model, it was by no means successful in inducing all subjects to

use the algorithmic model.

Group means. Group means for each of the new groups are shown in Table 6.

Insert Table 6 about here

A one-way analysis of variance was conducted on the four group means for the
three-term series problems averaged over sessions. These means differed sig-
nificantly from each other, F(3,140) = 2.76, p < .05. None of the Newman-Keuls
follow-ups were significant, however.

Reliabilities. Reliabilities of the three-term series latencies were

quite variable, perhaps in part because of the widely varying numbers of
subjects in the different groups. The reliabilities were .96 for the mixed
group, .69 for the linguistic group, .78 for the spatial group, and .84 for the
algorithmic group.

Mathematical models. The mathematical models were refit to the group

data for each of the new groups, as shown in Table 7, Since each individual

Insert Table 7 about here

subject was best fit by the model designating the group identification, the
expectation was that the group data for each new group would be best fit by the
model best fitting each of the individual subjects. This was not always the
case, however. In the linguistic group, the mixed model provided a better fit
to the group data than did the linguistic model, This result is presumably due

to high variability of individual parameter estimates for the linguistic model,

resulting in greater difficulty for the linguistic model than for the mixed model

in fitting the averaged data.

Correlations between solution latencies and ability factor scores. Table

8 shows correlations between solution latencies and ability factor scores for

subjects in each of the new groups. The patterns are rather striking, and in-

e— e ot il ol o i 2t
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Insert Table 8 about here

dicate a pronounced aptitude-strategy interaction in the solution of the
series problems. Latencies in the mixed group were significantly correlated
with both verbal and spatial factor scores, as would be expected from the
nature of the mixed model, which requires formation of both linguistic and
spatial representations. Latencies in the linguistic group were significantly

correlated with verbal ability scores, but not with spatial ability scores.

Latencies in the spatial group, however, were uncorrelated with verbal ability scores.

but were significantly correlated with spatial ability scores. Finally,
latencies in the algorithmic group were significantly (but weakly) correlated
with verbal ability scores, but only marginally correlated with spatial ability
scores. The reduéed correlations with the verbal ability scores are consistent
with a model in which superficial verbal processing, possibly only at the
surface-structural level, is required.

These correlations are of interest from an additional point of view. For
the mixed model, they confirm previous correlational findings that suggested
the use of both linguistic and spatial representations in the solution of linear
syllogisms. For the other models, however, they provide the first external
validating evidence that the tepresentat10;::;roponents of the models claim sub-
jects use when solving series problems by those models are actually used by
mbjects in solving the problems. In the past, arguments of this kind were
made on the basis of patterns in response times. Although these patterns were
potentially helpful in deciding upon real-time processes used by aubjects, it
has never been clear that they argued persuasively in favor of one or another
®presentation. For example, the fact that response times show a pattern indica-

tive of a marking operation does not argue in favor of one kind:of representation
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or another in the execution of that operation. As it happens, the linguistic
model claims the operation acts upoan a linguistic representation; the spatial
model claims the operation acts upon a spatial representation; and the mixed

q model claims the operation acts upon both kinds of representations. The present
data suggest that the kind of representation used is consistent with the claims
of each model for those subjects using the given model. i

Discussion
The research described above accomplished its major goal--to demonstrate

an aptitude-strategy interaction in linear syllogistic reasoning whereby dif-
ferent strategies for solving linear syllogisms draw upon different abilities.
The optimum strategy for solving linear syllogisms depends upon one's pattern
of abilities. The research also accomplished three subsidiary goals. First, |
it demonstrated that it is possible to train subjects either to use a visual

representation for premise information or an algorithmic strategy for solution.

In the former case, a large majority of subjects use a visual representation
spontaneously, so there is little need for training. Not all of the subjects
adhered to the instructions they received, and further training might be neces-
sary to increase the proportions of subjects benefiting from the instruction
mgesented them. Second, it was found that one particular strategy is more ef-
ficient on the average than alternative strategies for solving linear syllogisms.
In particular, the algorithmic strategy (Quinton & Fellows, 1975) results in _ ;
response times significantly lower than those obtained under any of the alterna-
tive strategies considered in this investigation. Third, the validity of the

mixed model was again upheld for the large majority of untrained subjects.

g

By correlating parameter estimates for individual subjects with ability

factor scores, it is possibie to localize the components of information proces-

sing that are responsible for the various correlations of global task scores
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with the ability scores. Since the individual components of information pro-
cessing under each model were not described in this article, these correlations
&e relegated to an appendix.
1 The present research has applied the methodology of componential analysis
(Sternberg, 1977b, 1978a, 1978b, 1978c, 1979) to the investigation of an 2?
aptitude-strategy interaction in linear-syllogistic reasoning. In this appli-
cation, a number of other issues have been dealt with as well. The strength
of the interaction suggests the possibility that previous research in the
E aptitude-treatment domain may have failed to elicit interactions because of
the use of less powerful theoretical and methodological techniques. Componen-

tial analysis seems to hold some promise as an analytic tool in future inves-

tigations of aptitude-treatment interactions.
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Appendix

Correlations were computed between parameter estimates for individual
subjects and factor scores for verbal and spatial abilities. These correla-

tions are presented in Table A.

Insert Table A about here

Correlations were computed in two different ways. First, they were com-
puted using all parameter estimates that were positive (that is, greater than
®ro). It was assumed that negative and zero parameter estimates of component
duration represented error of measurement, and hence such estimates were treated

as missing data. Second, the correlations were computed using only parameter

estimates significantly positive at the .05 level of significance. Other estimates

were treated as missing data. This stricter criterion for inclusion increases
the probability that each estimate included in the correlational analysis is
psychologically (as well as statistically) meaningful. This dual correlational
procedure was previously employed by Sternberg (in press-b).

According to the mixed model, encoding and marking should be correlated
with both verbal and spatial scores; negation, pivot search, and response‘search
should be correlated with spatial scores; and noncongruence should be correlated
with verbal scores, In fact, the data came close to showing just these
patterns. Only negation failed to behave as predicted. According to the
linguistic model, all parameter estimates should be correlated with verbal
scores, and none with spatial scores. Marking, negation, and noncongruence
were in fact correlated with verbal scores (for the first set of correlatioms),

dthough marking was correlated with spatial scores as well. Encoding and

pivot search were not significantly correlated with either kind of factor score.
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kcording to the spatial model, each parameter should be correlated with spatial

scores; encoding may also be correlated with verbal scores. In fact, both
marking and pivot search were correlated with the spatial scores (for the
first set of correlations). The other parameters were not correlated with
either factor score. Predictions for the algorithmic model are less clear,
although to the extent any correlations are obtained at all, one would prob-
ably expect them to be with verbal rather than spatial scores. Since only
surface-structural properties of the premises are used, however, even the
correlations with verbal tests might be expected to be weak. Only marking
as correlated with any of the scores, and it was correlated with both
abilities (in the first set of correlations).

Given the unreliability of individual parameter estimates, these corre-
lations are viewed as generally supportive of the models for which they were
computed. Only two significant correlations were obtained that were contrary

to model predictions. Both of these were for marking. The nonsignificant

correlations, of course, might be due to error in the predictions of the models,

or to unreliability of parameter estimates for individual subjects.
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Footnotes

; This research was supported by Contract N0001478CN025 from the Office of

l} Naval Research to Robert J. Sternberg. Portions of this article were pre-

sented at the ONR Contractors' Conference, New Orleans, 1979, and at the

annual meeting of the American Educational Research Association, San Fran-

cisco, 1979. We are grateful to Elizabeth Charles for assistance in testing

;I. subjects and in data analysis, to Barbara Conway for assistance in data

analysis, and to Janet Powell for comments on the manuscript. Requests

for reprints should be addressed to Robert J, Sternberg, Department of

Psychology, Yale University, Box 11A Yale Station, New Haven, Counecticut 06520.
1

The ummarked form of an adjective is the positive form, usually used to

name the scale (e.g., taller, better, faster); the marked for is the negative

form, usually used in a contrastive sense (e.g., shorter, worse, slower).

zThis strategy works for any linear syllogism that is completely deter-
minate with respect to the placement of each term in the array. It does

not work for so-called "indeterminate'" linear syllogisms, e.g., "John is

taller than Pete. John is taller than Bill, Who is tallest (shortest)?
John, Bill, Pete." No indeterminate problems were used in this experiment,
and the inability of the strategy to yield a correct answer to such problems

was not mentioned.
3 Mean error rates were 1.77 in the untrained group, 2.0% in the visually
trained group, and 3.57 in the algorithmic group. The greater speed of the

algorithmically-trained subjects was thus bought at the expense of some accuracy.
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Table 1

Mean Solution Latencies:

Original Groups

Untrained Visualization Algorithmic

3-Tern Series 7.03 7.18 4,51

‘55 Session 1 7.45 7.58 4.90
‘ Session 2 6.81 7.09 4.38
Session 3 6.84% 6.89 4,28

2- & 3-Term Series 6.30 6.46 4.19

Note: Latencies are expressed in seconds.,
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Table 2

Intercorrelations between and Reliabilities of Solution Latencies
for Linear Syllogisms

Untrained Visualization Algorithmic  Reliability®

Untrained 1.00 <9 .81 91
Visualization 1.00 79 92
Algorithmic 1.00 .91

Note: Correlations are across 32 item types.

‘Reliability is of the internal-consistency type (coefficient alpha).




Untrained

3-Term Series

{ Session 1
Session 2

B Session 3

Visualization

3-Term Series

Session 1
Session 2

Session 3

2- & 3-Term Series

Algorithmic

3-Term Series

Session 1

Session 2

2- & 3-Term Series

‘ Session 3
1

2- & 3-Term Series
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Table 3
Fits of Models to Latency Data:

Original Groups

Mixed Model |Linguistic Model Spatial Model Algorithmic Model

% RMSD % RMSD R? RMSD % RMSD
.82 .46 .64 .56 .66 .55 .59 .61
75 .46 .55 .61 .53 .62 48 .66
75 .41 .61 .51 .60 .52 .58 .53
.65 .50 .57 .55 61 453, .58 .55
.95 .44 91 .52 .92 .51 .90 .56
.81 .50 .65 .67 .65 .67 53 .77
.80 .43 .67 .51 g1 .54 .56 .66
79 .43 .62 .58 .57 .61 .47 .68
79 .40 .61 .55 .59 .56 .54 .60
.93 .48 .88 .62 .89 .61 .85 .71
73 .22 g .54 .28 a2 22
.66 .24 .66 .24 51 .29 .69 .23
.63 .22 .62 ,22 .40 .28 .66 .21
.64 .21 .63 .22 49 .26 .67 .21
93 .21 93 .21 .87 .28 .87 .28




Correlations between Solution Latencies and Ability Factor

Uninstructed Group
3-Term Series
Session 1
Session 2
Session 3
2- & 3-Term Series
Visualization Group
3-Term Series
Session 1
Session 2
Session 3
2- & 3~Term Series
Algorithmic Group
3-Term Series
Session 1
Session 2
Session 3

2- & 3-Term Series

*p <.05
*%p <.01
®#4p <,001
&
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Task Scores for Original Groups
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Scores:
Verbal Spatial
-.47*** -.43***
- G hRk = 4Shk%
-, 48%%% - G6%kk%k
-.60** e 34**
-.47*** -.44***
"0‘9*** -030*
. 4BRRR -.36%%
- SGkkn -.27%
- 4OR% -.25%
- . 50kKR -, 20%
"038** ".30*
T -.38%%
~.33% -.28%
—41%* -.20
-030*
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Table 5

Numbers of Subjects in Each of Original Groups

Resorted into Each of New Groups

Mixed Linguistic Spatial Algorithmic TOTAL

Untrained 30 7 S 6 48
Visualization 30 7 6 5 48
Algorithmic 22 1 4 21 48
TOTAL 82 15 15 32 144
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Table 6
Mean Solution Latencies:

New Groups |

Mixed Linguistic Spatial Algorithmic

3-Term Series 6.30 7.09 6.94 5.36
Session 1 6.76 7.47 7.24 5.66
Session 2 6.10 6.99 6.79 5.30 :
Session 3 6.06 6.74 6.79 5.14
E | 2~ & 3-Term Series 5.69 6.37 6.26 4,91
3 Note: Latencies are expressed in seconds.
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Mixed Group
3-Term Series
Session 1
Session 2
Session 3

2- & 3-Term
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Table 7

Fits of Models to Latency Data:

Linguistic Group

3-Term Series
Session 1
Session 2
Session 3
2- & 3-Term
Spatial Group

3-Term Series
Session 1
Session 2
Session 3
2- & 3-Term

3-Term Series
Session 1
Session 2
Session 3

2- & 3-Term

Algorithmic Group

New Groups
Mixed Model Linguistic Model
Rz RMSD Rz RMSD Rz
.88 .26 .63 .45 .60
.87 .66 .63
.83 .60 «52
.81 .60 55
.96 .26 91 .42 .90
J4 .47 .68 .53 .67
«65 .58 «56
.58 «35 «53
.50 «40 44
.92 .47 91 .51 .90
.60 .39 «53 .38 .68
.48 .38 .47
45 42 .53
.49 <46 «56
.83 .53 .87 .56 .91
63 .32 .62 .33 «56
.50 .50 .46
52 «50 .43
.55 «53 .48
.92 .30 91 .31 .89
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Spatial Model

RMSD

.47
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Algorithmic Model

R? RMSD

.37
«39
.54
.58
.90

<54
«50

<41
.31

.87

.36
«25

032 *
<34

.84

74
.58

«65
<60

<94
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Table 8
Correlations between Solution Latencies and Ability Factor Scores: -
; . Task Scores for New Groups
3
| :
3 Verbal Spatial 4
Mixed Model Group
3-Term Series = 45h% - 27%%
Session 1 = 43%%% =.3244%
: Session 2 = h4Rk% - 25%%
’ Session 3 =37k -.17
2- & 3-Term Series - 4 7Rk% - 27%%
Linguistic Model Group
3~Term Series -, 76%%% -.28
Session 1 - 79%%k% -.30
Session 2 ' = 75%kk% -.29
Session 3 - 70%% -.23
‘ 2- & 3-Term Series = 76%%% -.29
| Spatial Model Group
1 3-Tern Series -.08 - 61%%
‘ Session 1 -.16 =, 62%%
| Session 2 -.29 - 60%#
1 Session 3 -.15 - 71%%
2- & 3-Term Series -.08 -, 60%%
L Algorithmic Model Group
3-Term Series -.32% -.28
Session 1 +.30% -.31%
Session 2 -.29% -.31%
1 Session 3 ~.33% -.19
2- & 3-Term Series -.33% -.28
1
*p <.05
**p <.01
*ikp <.001




Correlations between Solution Latencies and Ability Pactor Scores:

Mixed Model Group
Encoding
Marking
| Negation
' Pivot Search (Mixed)
Response Search
Noncongruence
Linguistic Model Group
Encoding
Marking
Negation
Pivot Search (Linguistic)
Noncongruence
Spatial Model Group
Encoding
Marking
Negation
Pivot Search (Spatial)
Seriation
Algorithmic Model Group
Encoding
Marking
Negation
Location
Noncongruence

Table A

Aptitude-Strategy Interactic

Component Scores for New Groups

Positive Scores

Verbal

- 27%%
- 24*
-.20
.01
-.20
-.21%

.05
- 72%%
— 71%%
.13
-, 73%%k

-.19
-.17

.00
-.04
-.09

-.22
=.35%
-.06
-.10
.20

Spatial

-.20%
-,30%%
-.11
-.26%
-.22%
-.09

.04
-.36*
-.12
-.60
-.29

-.38
- b4*
.00
-, 71%%

-.30

-.27
-.37%
-.14
-.31
.08

33

Significant Scotes.

Verbal Spatial

—.29%% - 26%%
— 49Nk 44%
-.10 .07
-.26  -.39%
.03 - 45k

-.“** -.M
.05 .04
-.60 .03 i
-018 -.26 t
.59  -.63 %
-.93% -.51 ;j
--25 °.42
"002 -061

=-.05 =.75%%

-.22 -.27
.17 -.77

=-.21 =.45%
<36 =1.00%%%
.23 -=.08

Note: Numbers of cases vary from one correlation to another.

1 *p < .05
B fip < .01
.**2 < ,001

8 arameters significant at p < .05
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